Solubility Isotherms of Gypsum, Hemihydrate, and Anhydrite in the Ternary Systems CaSO4 + MSO4 + H2O (M = Mn, Co, Ni, Cu, Zn) at T = 298.1 K to 373.1 K
详细信息    查看全文
文摘
The solubilities of anhydrite in the ternary systems CaSO4 + MSO4 + H2O (M = Co, Ni) were determined through isothermal solution saturation at 348.1 K and 363.1 K. At low bivalent metal sulfate concentrations, anhydrite solubility decreases until it eventually reaches a minimum. Anhydrite solubility subsequently increases with the amount of heavy metal sulfate to a maximum. At this point, further increases in the concentration of metal sulfate decreases the solubility of anhydrite until saturation of the added bivalent metal sulfate. A Pitzer thermodynamic model was selected to predict isopiestic data including calcium sulfate solubilities of the ternary systems CaSO4 + MSO4 + H2O (M = Mn, Co, Ni, Cu, Zn) from 298.1 K to 373.1 K. The functional dependencies of the MSO4 (M = Ni, Cu, Zn) ion interaction parameters with temperature were determined, and the third virial parameters were given. The calculated solubilities are in agreement with the available experimental data. Using the Pitzer model and parameters, the solubility isotherms of metastable solid-phase hemihydrate, as well as gypsum and anhydrite, in the CaSO4 + MSO4 + H2O (M = Mn, Co, Ni, Cu, Zn) systems were predicted over a wide range of temperatures and concentrations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700