High-Performance Electron Field Emitters and Microplasma Cathodes Based on Conductive Hybrid Granular Structured Diamond Materials
详细信息    查看全文
文摘
High-performance diamond electron field emitters (EFEs) with extremely low turn-on field (Eb>0b> = 1.72 V/μm) and high current density (1.70 mA/cm2 at an applied field of 3.86 V/μm) were successfully synthesized by using a modified two-step microwave plasma chemical deposition process. Such emitters possess EFE properties comparable with most of carbon- or semiconductor-based EFE materials, but with markedly better lifetime stability. The superb EFE behavior of these materials was achieved owing to the reduction in the diamond-to-Si interfacial resistance and the increase in the conductivity of the bulk diamond films (HBDb>–400 Vb>) via the applications of high bias voltage during the preparation of the ultrananocrystalline diamond (UNCD) primary layer and the subsequent plasma post-treatment (PPT) process, respectively. The superior EFE properties along with enhanced robustness of HBDb>–400 Vb> films compared with the existing diamond-based EFE materials rendered these materials of greater potential for applications in high brightness display and multifunctional microplasma.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700