Atomically Flat Silicon Oxide Monolayer Generated by Remote Plasma
详细信息    查看全文
文摘
We demonstrate stable, atomically smooth monolayer oxidation of Si(111) using a remote plasma. Scanning tunneling microscopy (STM) confirms the atomically flat nature of the oxidized surface, while cross-sectional transmission electron microscopy (TEM) proves the monolayer to bilayer oxide thickness. Fourier transform infrared spectroscopy (FTIR) and atomic layer deposition (ALD) indicate oxygen is incorporated onto the silicon surface in the form of Si–O–Si and Si–OH bonds. The incorporation of Si–OH bonds is inferred by using TiClb>4b>, a highly specific ALD precursor, for TiOb>2b> ALD. This plasma technique provides precise control of the surface chemistry and yields abrupt yet stable SiO/Si interfaces. It enables production of atomically flat, ALD-active silicon surfaces that could serve as a well-defined platform for investigation of various surface chemistries via STM. Using this substrate, we present the first ever STM observations of ALD TiOb>2b> on silicon oxide.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700