Surface Enhanced Raman Scattering on a Single Nanometric Aperture
详细信息    查看全文
文摘
Arrays of nanoapertures have been demonstrated to realize efficient, robust, and reproducible substrates for surface-enhanced Raman scattering SERS spectroscopy. However, little attention has been devoted to single nanoapertures, although a thorough understanding of the SERS phenomenon in a single aperture is essential for the rationale optimization of nanoaperture arrays SERS. In this study, single nanoapertures milled in optically thick gold films are quantitatively evaluated for the first time to determine the SERS enhancement factors using para-mercaptoaniline as nonresonant analyte. We determine a peak enhancement factor of 2 × 105 for a single 100 nm diameter aperture. Although this is a moderate enhancement factor, we believe that nanoapertures deserve special attention to highlight the physical and chemical phenomena leading to SERS enhancement and better understand the design of nanoaperture arrays for SERS substrates. The experimental data are supported by numerical simulations and argue for a careful consideration of aperture diameter, incident polarization, analyte deposition method, and nature of the gold adhesion layer while designing aperture-based SERS substrates and evaluating SERS enhancement factors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700