Strong Near-Field Coupling of Plasmonic Resonators Embedded in Si Nanowires
详细信息    查看全文
文摘
The strength of localized surface plasmon resonance (LSPR) near-field interactions scales in a well-known, nearly universal manner. Here, we show that embedding resonators in an anisotropic dielectric with a large permittivity can substantially increase coupling strength. We experimentally demonstrate this effect with Si nanowires containing two phosphorus-doped segments. The near-field decay length scaling factor is extracted from in situ infrared spectral response measurements using the “plasmon ruler” equation and found to be ca. 4−5 times larger than for the same resonators in isotropic vacuum or Si. Discrete dipole approximation calculations support the observed coupling behavior for nanowires and show how it is affected by the resonator geometry, carrier density, and embedding material (Si, Ge, GaAs, etc.). Our findings demonstrate that equivalent near-field interactions are achievable with a smaller total volume and/or at increased resonator spacing, offering new opportunities to engineer plasmon-based chemical sensors, catalysts, and waveguides.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700