Alignment-Free Prediction of a Drug−Target Complex Network Based on Parameters of Drug Connectivity and Protein Sequence of Receptors
详细信息    查看全文
文摘
There are many drugs described with very different affinity to a large number of receptors. In this work, we selected drug−receptor pairs (DRPs) of affinity/nonaffinity drugs to similar/dissimilar receptors and we represented them as a large network, which may be used to identify drugs that can act on a receptor. Computational chemistry prediction of the biological activity based on quantitative structure−activity relationships (QSAR) substantially increases the potentialities of this kind of networks avoiding time- and resource-consuming experiments. Unfortunately, most QSAR models are unspecific or predict activity against only one receptor. To solve this problem, we developed here a multitarget QSAR (mt-QSAR) classification model. Overall model classification accuracy was 72.25% (1390/1924 compounds) in training, 72.28% (459/635) in cross-validation. Outputs of this mt-QSAR model were used as inputs to construct a network. The observed network has 1735 nodes (DRPs), 1754 edges or pairs of DRPs with similar drug−target affinity (sPDRPs), and low coverage density d = 0.12%. The predicted network has 1735 DRPs, 1857 sPDRPs, and also low coverage density d = 0.12%. After an edge-to-edge comparison (chi-square = 9420.3; p < 0.005), we have demonstrated that the predicted network is significantly similar to the one observed and both have a distribution closer to exponential than to normal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700