Photoelectrochemical Solar Cells Consisting of a Pt-Modified CdS Photoanode and an Fe(ClO4)2/Fe(ClO4)3 Redox Shuttle in a Nonaqueous Electrolyte
详细信息    查看全文
文摘
Photoelectrochemical photovoltaic cells (PEC PVs) consisting of an n-type CdS single-crystal electrode and a Pt black counter electrode in a nonaqueous electrolyte containing an Fe(ClO4)2/Fe(ClO4)3 redox shuttle were studied as a means of obtaining photovoltages above the onset voltage for water splitting with one-step photoexcitation. To improve the photovoltaic performance, the effects of the redox concentration on the cell performance were investigated by UV–vis absorption and PEC measurements and by assessing the electrolyte using hydrodynamic voltammetry. Under visible-light irradiation (420–800 nm) from a Xe lamp, a relatively high open-circuit voltage (VOC) of approximately 1.6 V was obtained, resulting from the negative flat-band potential of the CdS and the positive redox potential of the Fe complexes. Upon optimization of the redox concentration, photocurrent for the Pt/CdS electrode was increased to approximately 30 mA cm–2, and an incident photon-to-current conversion efficiency of up to 80% was achieved at 480 nm as a result of the promotion of the anodic reaction on the Pt surface. Under simulated sunlight, the PEC PV composed of Pt/CdS in a 20 mM Fe(ClO4)2/Fe(ClO4)3 electrolyte exhibited a VOC of 1.38 V, a 3.54 mA cm–2 short-circuit current, and a 2.8% photon-to-energy conversion efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700