Wafer-Scale Fabrication of Nanofluidic Arrays and Networks Using Nanoimprint Lithography and Lithographically Patterned Nanowire Electrodeposition Gold Nanowire Masters
详细信息    查看全文
文摘
Wafer scale (cm2) arrays and networks of nanochannels were created in polydimethylsiloxane (PDMS) from a surface pattern of electrodeposited gold nanowires in a master-replica process and characterized with scanning electron microscopy (SEM), atomic force microscopy (AFM), and fluorescence imaging measurements. Patterns of gold nanowires with cross-sectional dimensions as small as 50 nm in height and 100 nm in width were prepared on silica substrates using the process of lithographically patterned nanowire electrodeposition (LPNE). These nanowire patterns were then employed as masters for the fabrication of inverse replica nanochannels in a special formulation of PDMS. SEM and AFM measurements verified a linear correlation between the widths and heights of the nanowires and nanochannels over a range of 50 to 500 nm. The PDMS replica was then oxygen plasma-bonded to a glass substrate in order to create a linear array of nanofluidic channels (up to 1 mm in length) filled with solutions of either fluorescent dye or 20 nm diameter fluorescent polymer nanoparticles. Nanochannel continuity and a 99% fill success rate was determined from the fluorescence imaging measurements, and the electrophoretic injection of both dye and nanoparticles in the nanochannel arrays was also demonstrated. Employing a double LPNE fabrication method, this master-replica process was also used to create a large two-dimensional network of crossed nanofluidic channels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700