Ab Initio Study of Thin Oxide鈥揗etal Overlayers as an Inverse Catalytic System for Dioxygen Reduction and Enhanced CO Tolerance
详细信息    查看全文
文摘
Using first-principles density functional theory calculations, we used a thin oxide overlayer, such as MgO, on a metal surface as an inverse catalyst for dioxygen reduction. Surface distortions in the oxide layer, combined with the tunneling of electron from the underneath metal, activated the adsorbed O2 in the form of a superoxo or peroxo. On the other hand, the thin MgO overlayer readily prevents the 蟺-back-bonding between CO and the metal surface, thereby efficiently mitigating the affinity of the metal surface for CO. The operating potential and overpotential for the oxygen reduction reaction (ORR) process have been estimated for various combinations of thin insulators and metals. The strongest binding intermediate in the overall reaction pathway influenced the overpotential. We show that for a Ag(100)-supported MgO surface, the ORR commences with a low overpotential, which is comparable to that of the Pt(111) surface. This suggests that an optimally chosen insulator鈥搈etal overlayer structure can yield a sharply tuned free energy profile for ORR.

Keywords:

ab initio calculation; electrocatalyst; inverse catalyst; overpotential; electron tunneling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700