Luminescence and Energy Transfer Properties of Ca2Ba3(PO4)3Cl and Ca2Ba3(PO4)3Cl:A (A = Eu2+/Ce3
详细信息    查看全文
文摘
Pure Ca2Ba3(PO4)3Cl and rare earth ion (Eu2+/Ce3+/Dy3+/Tb3+) doped Ca2Ba3(PO4)3Cl phosphors with the apatite structure have been prepared via a Pechini-type sol鈥揼el process. X-ray diffraction (XRD) and structure refinement, photoluminescence (PL) spectra, cathodoluminescence (CL) spectra, absolute quantum yield, as well as lifetimes were utilized to characterize samples. Under UV light excitation, the undoped Ca2Ba3(PO4)3Cl sample shows broad band photoluminescence centered near 480 nm after being reduced due to the defect structure. Eu2+ and Ce3+ ion doped Ca2Ba3(PO4)3Cl samples also show broad 5d 鈫?4f transitions with cyan and blue colors and higher quantum yields (72% for Ca2Ba3(PO4)3Cl:0.04Eu2+; 67% for Ca2Ba3(PO4)3Cl:0.016Ce3+). For Dy3+ and Tb3+ doped Ca2Ba3(PO4)3Cl samples, they give strong line emissions coming from 4f 鈫?4f transitions. Moreover, the Ce3+ ion can transfer its energy to the Tb3+ ion in the Ca2Ba3(PO4)3Cl host, and the energy transfer mechanism has been demonstrated to be a resonant type, via a dipole鈥搎uadrupole interaction. However, under the low voltage electron beam excitation, Tb3+ ion doped Ca2Ba3(PO4)3Cl samples present different luminescence properties compared with their PL spectra, which is ascribed to the different excitation mechanism. On the basis of the good PL and CL properties of the Ca2Ba3(PO4)3Cl:A (A = Ce3+/Eu2+/Tb3+/Dy3+), Ca2Ba3(PO4)3Cl might be promising for application in solid state lighting and field-emission displays.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700