Quantifying the Heterogeneous Dynamics of a Simulated Dipalmitoylphosphatidylcholine (DPPC) Membrane
详细信息    查看全文
文摘
Heterogeneity of dynamics plays a vital role in membrane function, but the methods for quantifying this heterogeneity are still being developed. Here we examine membrane dynamical heterogeneity via molecular simulations of a single-component dipalmitoylphosphatidylcholine (DPPC) lipid bilayer using the MARTINI force field. We draw upon well-established analysis methods developed in the study of glass-forming fluids and find significant changes in lipid dynamics between the fluid (Lα), and gel (Lβ) phases. In particular, we distinguish two mobility groups in the more ordered Lβ phase: (i) lipids that are transiently trapped by their neighbors and (ii) lipids with displacements on the scale of the intermolecular spacing. These distinct mobility groups spatially segregate, forming dynamic clusters that have characteristic time (1–2 μs) and length (1–10 nm) scales comparable to those of proteins and other biomolecules. We suggest that these dynamic clusters could couple to biomolecules within the membrane and thus may play a role in many membrane functions. In the equilibrium membrane, lipid molecules dynamically exchange between the mobility groups, and the resulting clusters are not associated with a thermodynamic phase separation. Dynamical clusters having similar characteristics arise in many other condensed phase materials, placing membranes in a broad class of materials with strong intermolecular interactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700