Origin of Electrochromism in High-Performing Nanocomposite Nickel Oxide
详细信息    查看全文
文摘
Electrochromic effects of transition metal oxides provide a great platform for studying lithium intercalation chemistry in solids. Herein, we report on an electronically modified nanocomposite nickel oxide (i.e., Li2.34NiZr0.28Ox) that exhibits significantly improved electrochromic performance relative to the state-of-the-art inorganic electrochromic metal oxides in terms of charge/discharge kinetics, bleached-state transparency, and optical modulation. The knowledge obtained from O K-edge X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) suggests that the internally grown lithium peroxide (i.e., Li2O2) species plays a major role in facilitating charge transfer thus enabling optimal electrochromic performance. This understanding is relevant to recent theoretical studies concerning conductivity in Li2O2 for lithium鈥揳ir batteries (as cited in the main text). Furthermore, we elucidate the electrochromism in modified nickel oxide in lithium ion electrolyte with the aid of Ni K-edge XAS and Ni L-edge XAS studies. The electrochromism in the nickel oxide materials arises from the reversible formation of hole states on the NiO6 units, which then impacts the Ni oxidation state through the Ni3d-O2p hybridization states. This study sheds light on the lithium intercalation chemistry for general energy storage and semiconductor applications.

Keywords:

electrochromism; multicomponent; nickel oxide; X-ray absorption spectroscopy; lithium intercalation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700