Orientation and Structure of Acetonitrile in Water at the Liquid–Vapor Interface: A Molecular Dynamics Simulation Study
详细信息    查看全文
文摘
We report molecular dynamics simulations of acetonitrile–water binary solutions at concentrations of 0.032–0.59 mole fraction. We find that at low bulk concentration acetonitrile has an enhanced population near the liquid/vapor interface. The surface-bound acetonitrile molecules exhibit anisotropic orientations and lie nearly flat along the solution surface with their terminal methyl groups directed toward the vapor. Upon increasing the bulk concentration, the formation of acetonitrile domains is promoted by interactions between hydrophobic methyl moieties. Dipole–dipole interactions facilitate a pseudonematic, antiparallel pairing of near-neighbor molecules both in the bulk solution and near the liquid/vapor interface. Near the interface the preferred orientation of acetonitrile flattens further to accommodate antiparallel pairing of neighboring molecules such that the methyl group remains above the solution. This study paints a surprisingly complex picture of a binary organic–water solution that manifests behavior similar to liquid crystals through preferred orientations and pseudonematic antiparallel pairing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700