Design and Synthesis of Potent Bivalent Peptide Agonists Targeting the EphA2 Receptor
详细信息    查看全文
文摘
Designing potent and selective peptides and small molecules that target Eph receptor tyrosine kinases remains a challenge, and new strategies are needed for developing novel and potent ligands for these receptors. In this study, we performed a structure鈥揳ctivity relationship study of a previously identified 12 amino acid-long peptide, SWL, by alanine scanning to identify residues important for receptor binding. To further enhance and optimize the receptor binding affinity of the SWL peptide, we applied the concept of bivalent ligand design to synthesize several SWL-derived dimeric peptides as novel ligands capable of binding simultaneously to two EphA2 receptor molecules. The dimeric peptides possess higher receptor binding affinity than the original monomeric SWL peptide, consistent with bivalent binding. The most potent dimeric peptide, a SWL dimer with a six-carbon linker, has about 13-fold increased potency as compared to SWL. Furthermore, similar to SWL, the dimeric peptide is an agonist and can promote EphA2 tyrosine phosphorylation (activation) in cultured cells.

Keywords:

peptide inhibitors; Eph receptors; structure-based drug design; protein鈭抪rotein interactions

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700