Surface PEGylation via Native Chemical Ligation
详细信息    查看全文
文摘
Native chemical ligation (NCL) is an emerging chemoselective chemistry that forms an amide bond by trans-thioesterification followed by intramolecular nucleophilic rearrangement between thioester and cysteine. The reaction is simple, occurs in a mild aqueous solution, and gives near-quantitative yields of a desired product. Since the first report in 1994, most studies involving the use of NCL have focused on the total synthesis of proteins to address fundamental questions pertaining to many aspects of protein science, such as folding, mirror images, and site-specific labeling of proteins, but applications of the NCL reaction for other areas remain largely unexplored. Herein, we present a facile strategy for surface immobilization of poly(ethylene glycol) (PEG) utilizing the NCL reaction. Surface immobilization of PEG (i.e., PEGylation) plays a key role in preventing nonspecific protein adsorption on surfaces, which is crucial in a wide variety of medical devices. Using cysteine-PEG and thioester-containing phosphonic acid conjugates, we achieved efficient surface PEGylation on titanium surfaces. Ellipsometry, goniometry, and X-ray photoelectron spectroscopy (XPS) unambiguously confirmed the presence of PEGs, which provided nonfouling effects of surfaces. This study indicates that the NCL reaction will be a useful toolkit for surface bioconjugation and functionalization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700