Inferring Transition Rates of Networks from Populations in Continuous-Time Markov Processes
详细信息    查看全文
文摘
We are interested inferring rate processes on networks. In particular, given a network鈥檚 topology, the stationary populations on its nodes, and a few global dynamical observables, can we infer all the transition rates between nodes? We draw inferences using the principle of maximum caliber (maximum path entropy). We have previously derived results for discrete-time Markov processes. Here, we treat continuous-time processes, such as dynamics among metastable states of proteins. The present work leads to a particularly important analytical result: namely, that when the network is constrained only by a mean jump rate, the rate matrix is given by a square-root dependence of the rate, kab 鈭?(蟺b/蟺a)1/2, on 蟺a and 蟺b, the stationary-state populations at nodes a and b. This leads to a fast way to estimate all of the microscopic rates in the system. As an illustration, we show that the method accurately predicts the nonequilibrium transition rates in an in silico gene expression network and transition probabilities among the metastable states of a small peptide at equilibrium. We note also that the method makes sensible predictions for so-called extra-thermodynamic relationships, such as those of Bronsted, Hammond, and others.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700