Interplay of the Open Circuit Potential-Relaxation and the Dissolution Behavior of a Single H2 Bubble Generated at a Pt Microelectrode
详细信息    查看全文
文摘
The dissolution behavior of a single H2 bubble electrochemically generated at a Pt microelectrode in 1 M H2SO4 was studied. The open circuit potential (OCP) relaxation after the polarization end was recorded and correlated with the dissolved H2 concentration at the interface electrode/electrolyte/gas. Simultaneously, the shrinking of the bubble was followed optically by means of a high speed camera. In addition, analytical modeling and numerical simulations for the bubble dissolution were performed. Three characteristic regions are identified in the OCP and the bubble radius transients: (i) slow relaxation and shrinking, (ii) transition region, and (iii) a long-term slowed down dissolution process. The high supersaturation after polarization remains longer than theoretically predicted and feeds the bubble in region (i). This reduces the dissolution rate of the bubble which differs significantly from that of nonelectrochemically produced bubbles. Numerical multispecies simulations prove that oxygen and nitrogen dissolved in the electrolyte additionally influence the bubble dissolution and slow down its shrinkage compared to pure hydrogen diffusion. In region (iii), a complete exchange of hydrogen gas with nitrogen and oxygen has occurred in the gas bubble.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700