Systems Design and Economic Analysis of Direct Air Capture of CO2 through Temperature Vacuum Swing Adsorption Using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF Adsorbents
详细信息    查看全文
文摘
Direct air capture (DAC) removes CO2 from the atmosphere and can therefore address sizable nonpoint sources emissions of CO2 such as those from transportation. We propose a five-step temperature vacuum swing adsorption process for direct air capture using solid adsorbents coated as films on monolithic contactors using steam as the stripping agent during desorption. We perform a modeling study and economic assessment for DAC using two metal organic frameworks, MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc), for which we have experimentally demonstrated film growth on monolith structures. The results indicate minimum energy requirements, and cost estimates are 0.145 MJ/mol-CO2 and $75–140/t-CO2 for MIL-101(Cr)-PEI-800, and 0.113 MJ/mol-CO2 and $60–190/t-CO2 for mmen-Mg2(dobpdc), respectively. The overall DAC cost is sensitive to adsorbent purchase cost and lifetime as well as cycle parameters such as adsorption and desorption times. We conclude that mmen-Mg2(dobpdc) has better performance compared to MIL-101(Cr)-PEI-800 in terms of energy requirements because of its higher capacity and nonlinear isotherm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700