Activation Energy Paths for Graphene Nucleation and Growth on Cu
详细信息    查看全文
文摘
The synthesis of wafer-scale single crystal graphene remains a challenge toward the utilization of its intrinsic properties in electronics. Until now, the large-area chemical vapor deposition of graphene has yielded a polycrystalline material, where grain boundaries are detrimental to its electrical properties. Here, we study the physicochemical mechanisms underlying the nucleation and growth kinetics of graphene on copper, providing new insights necessary for the engineering synthesis of wafer-scale single crystals. Graphene arises from the crystallization of a supersaturated fraction of carbon-adatom species, and its nucleation density is the result of competition between the mobility of the carbon-adatom species and their desorption rate. As the energetics of these phenomena varies with temperature, the nucleation activation energies can span over a wide range (1鈥? eV) leading to a rational prediction of the individual nuclei size and density distribution. The growth-limiting step was found to be the attachment of carbon-adatom species to the graphene edges, which was independent of the Cu crystalline orientation.

Keywords:

chemical vapor deposition; graphene; nucleation and growth; surface catalysis; 2D nanomaterial; large-area optoelectronics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700