Hydrodynamically Tunable Affinities for Fluidic Assembly
详细信息    查看全文
文摘
Most current micro- and nanoscale self-assembly methods rely on static, preprogrammed assembly affinities between the assembling components such as capillarity, DNA base pair matching, and geometric interactions. While these techniques have proven successful at creating relatively simple and regular structures, it is difficult to adapt these methods to enable dynamic reconfiguration of the structure or on-the-fly error correction. Here we demonstrate a technique to hydrodynamically tune affinities between assembling components by direct thermal modulation of the local viscosity field surrounding them. This approach is shown here for two-dimensional silicon elements of 500 μm length using a thermorheological fluid that undergoes reversible sol−gel transition on heating. Using this system, we demonstrate the ability to dynamically change the assembly point in a fluidic self-assembly process and selectively attract and reject elements from a larger structure. Although this technique is demonstrated here for a small number of passive mobile components around a fixed structure, it has the potential to overcome some of the limitations of current static affinity based self-assembly.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700