Synthesis of Allylic Hydroperoxides and EPR Spin-Trapping Studies on the Formation of Radicals in Iron Systems as Potential Initiators of the Sensitizing Pathway
详细信息    查看全文
文摘
Many terpenes used as fragrance compounds autoxidize when exposed to air, forming allylic hydroperoxides that have the potential to be skin contact allergens. To trigger the immunotoxicity process that characterizes contact allergy, these hydroperoxides are supposed to bind covalently to proteins in the skin via radical pathways. We investigated the formation of reactive radical intermediates from 7-hydroperoxy-3,7-dimethylocta-1,5-dien-3-ol and 2-hydroperoxylimonene, responsible for the sensitizing potential acquired by autoxidized linalool and limonene. Both compounds were synthesized through new short and reproducible synthetic pathways. The hydroperoxide decomposition catalyzed by Fe(II)/Fe(III) redox systems, playing a key role in degradating peroxides in vivo, was examined by spin-trapping-EPR spectroscopy. Alkoxyl and carbon-centered free radicals derived from the hydroperoxides were successfully trapped by the spin-trap 5,5-dimethyl-1-pyrroline N-oxide, whereas peroxyl radicals were characterized by spin-trapping studies with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide. Using liquid chromatography combined with mass spectrometry, we demonstrated the formation of adducts, via radical mechanisms induced by Fe(II)/Fe(III), between the hydroperoxides and N-acetylhistidine methyl ester, a model amino acid that is prone to radical reactions. Free radicals derived from these hydroperoxides can thus induce amino acid chemical modifications via radical mechanisms. The study of these mechanisms will help to understand the sensitizing potential of hydroperoxides.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700