用户名: 密码: 验证码:
Oxidative Stretching of Metal鈥揗etal Bonds to Their Limits
详细信息    查看全文
文摘
Oxidation of quadruply bonded Cr2(dpa)4, Mo2(dpa)4, MoW(dpa)4, and W2(dpa)4 (dpa = 2,2鈥?dipyridylamido) with 2 equiv of silver(I) triflate or ferrocenium triflate results in the formation of the two-electron-oxidized products [Cr2(dpa)4]2+ (1), [Mo2(dpa)4]2+ (2), [MoW(dpa)4]2+ (3), and [W2(dpa)4]2+ (4). Additional two-electron oxidation and oxygen atom transfer by m-chloroperoxybenzoic acid results in the formation of the corresponding metal鈥搊xo compounds [Mo2O(dpa)4]2+ (5), [WMoO(dpa)4]2+ (6), and [W2O(dpa)4]2+ (7), which feature an unusual linear M路路路M鈮 structure. Crystallographic studies of the two-electron-oxidized products 2, 3, and 4, which have the appropriate number of orbitals and electrons to form metal鈥搈etal triple bonds, show bond distances much longer (by >0.5 脜) than those in established triply bonded compounds, but these compounds are nonetheless diamagnetic. In contrast, the Cr鈥揅r bond is completely severed in 1, and the resulting two isolated Cr3+ magnetic centers couple antiferromagnetically with J/kB= 鈭?08(3) K [鈭?5(2) cm鈥?], as determined by modeling of the temperature dependence of the magnetic susceptibility. Density functional theory (DFT) and multiconfigurational methods (CASSCF/CASPT2) provide support for 鈥渟tretched鈥?and weak metal鈥搈etal triple bonds in 2, 3, and 4. The metal鈥搈etal distances in the metal鈥搊xo compounds 5, 6, and 7 are elongated beyond the single-bond covalent radii of the metal atoms. DFT and CASSCF/CASPT2 calculations suggest that the metal atoms have minimal interaction; the electronic structure of these complexes is used to rationalize their multielectron redox reactivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700