Construction of Confidence Regions for Isotopic Abundance Patterns in LC/MS Data Sets for Rigorous Determination of Molecular Formulas
详细信息    查看全文
  • 作者:Andreas Ipsen ; Elizabeth J. Want ; Timothy M. D. Ebbels
  • 刊名:Analytical Chemistry
  • 出版年:2010
  • 出版时间:September 1, 2010
  • 年:2010
  • 卷:82
  • 期:17
  • 页码:7319-7328
  • 全文大小:335K
  • 年卷期:v.82,no.17(September 1, 2010)
  • ISSN:1520-6882
文摘
It has long been recognized that estimates of isotopic abundance patterns may be instrumental in identifying the many unknown compounds encountered when conducting untargeted metabolic profiling using liquid chromatography/mass spectrometry. While numerous methods have been developed for assigning heuristic scores to rank the degree of fit of the observed abundance patterns with theoretical ones, little work has been done to quantify the errors that are associated with the measurements made. Thus, it is generally not possible to determine, in a statistically meaningful manner, whether a given chemical formula would likely be capable of producing the observed data. In this paper, we present a method for constructing confidence regions for the isotopic abundance patterns based on the fundamental distribution of the ion arrivals. Moreover, we develop a method for doing so that makes use of the information pooled together from the measurements obtained across an entire chromatographic peak, as well as from any adducts, dimers, and fragments observed in the mass spectra. This greatly increases the statistical power, thus enabling the analyst to rule out a potentially much larger number of candidate formulas while explicitly guarding against false positives. In practice, small departures from the model assumptions are possible due to detector saturation and interferences between adjacent isotopologues. While these factors form impediments to statistical rigor, they can to a large extent be overcome by restricting the analysis to moderate ion counts and by applying robust statistical methods. Using real metabolic data, we demonstrate that the method is capable of reducing the number of candidate formulas by a substantial amount, even when no bromine or chlorine atoms are present. We argue that further developments in our ability to characterize the data mathematically could enable much more powerful statistical analyses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700