Lysine 213 and Histidine 233 Participate in Mn(II) Binding and Catalysis in Saccharomyces cerevisiae Phosphoenolpyruvate Carboxykinase
详细信息    查看全文
文摘
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyses the reversiblemetal-dependent formation of oxaloacetate and ATP from PEP, ADP, and CO2 and plays a key role ingluconeogenesis. This enzyme also has oxaloacetate decarboxylase and pyruvate kinase-like activities.Mutations of PEP carboxykinase have been constructed where the residues Lys213 and His233, two residuesof the putative Mn2+ binding site of the enzyme, were altered. Replacement of these residues by Arg andby Gln, respectively, generated enzymes with 1.9 and 2.8 kcal/mol lower Mn2+ binding affinity. LowerPEP binding affinity was inferred for the mutated enzymes from the protection effect of PEP against ureadenaturation. Kinetic studies of the altered enzymes show at least a 5000-fold reduction in Vmax for theprimary reaction relative to that for the wild-type enzyme. Vmax values for the oxaloacetate decarboxylaseand pyruvate kinase-like activities of PEP carboxykinase were affected to a much lesser extent in themutated enzymes. The mutated enzymes show a decreased steady-state affinity for Mn2+ and PEP. Theresults are consistent with Lys213 and His233 being at the Mn2+ binding site of S. cerevisiae PEPcarboxykinase and the Mn2+ affecting the PEP interaction. The different effects of mutations in Vmax forthe main reaction and the secondary activities suggest different rate-limiting steps for these reactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700