Gold Nanoparticles on Oxide-Free Silicon鈥揗olecule Interface for Single Electron Transport
详细信息    查看全文
文摘
Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating and to have very few electrical interface states. By positioning the tip of an STM above a nanoparticle, a double barrier tunnel junction (DBTJ) is created, and Coulomb blockade is demonstrated at 40 K. This is the first time Coulomb blockade is observed with an organic monolayer on oxide-free silicon. This work focuses on the fabrication and initial electrical characterization of this double barrier tunnel junction. The organic layers were prepared by thermal hydrosilylation of two different alkene molecules with either a long carbon chain (C11) or a shorter one (C7), and both were modified to be amine-terminated. FTIR and XPS measurements confirm that the Si(111) substrate remains unoxidized during the whole chemical process. Colloidal gold nanoparticles were prepared using two methods: either with citrate molecules (Turkevich method) or with ascorbic acid as the surfactant. In both cases AFM and STM images show a well-controlled deposition on the grafted organic monolayer. I鈥?i>V curves obtained by scanning tunneling spectroscopy (STS) are presented on 8 nm diameter nanoparticles and exhibit the well-known Coulomb staircases at low temperature. The curves are discussed as a function of the organic layer thickness and silicon substrate doping.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700