Biophysical Limits of Protein鈥揕igand Binding
详细信息    查看全文
文摘
In classic work, Kuntz et al. (Proc. Nat. Acad. Sci. USA1999, 96, 9997鈥?0002) introduced the concept of ligand efficiency. Though that study focused primarily on drug-like molecules, it also showed that metal binding led to the greatest ligand efficiencies. Here, the physical limits of binding are examined across the wide variety of small molecules in the Binding MOAD database. The complexes with the greatest ligand efficiencies share the trait of being small, charged ligands bound in highly charged, well buried binding sites. The limit of ligand efficiency is 鈭?.75 kcal/mol路atom for the protein鈥搇igand complexes within Binding MOAD, and 95% of the set have efficiencies below a 鈥渟oft limit鈥?of 鈭?.83 kcal/mol路atom. On the basis of buried molecular surface area, the hard limit of ligand efficiency is 鈭?17 cal/mol路脜2, which is in surprising agreement with the limit of macromolecule鈥損rotein binding. Close examination of the most efficient systems reveals their incredibly high efficiency is dictated by tight contacts between the charged groups of the ligand and the pocket. In fact, a misfit of 0.24 脜 in the average contacts inherently decreases the maximum possible efficiency by at least 0.1 kcal/mol路atom.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700