Peptide-Decorated Nanofibrous Niche Augments In Vitro Directed Osteogenic Conversion of Human Pluripotent Stem Cells
详细信息    查看全文
  • 作者:Yi DengYuanyi Yang ; Shicheng Wei
  • 刊名:Biomacromolecules
  • 出版年:2017
  • 出版时间:February 13, 2017
  • 年:2017
  • 卷:18
  • 期:2
  • 页码:587-598
  • 全文大小:928K
  • ISSN:1526-4602
文摘
Realization of clinical potential of human pluripotent stem cells (hPSCs) in bone regenerative medicine requires development of simple and safe biomaterials for expansion of hPSCs followed by directing their lineage commitment to osteoblasts. In the present study, a chemically defined peptide-decorated polycaprolactone (PCL) nanofibrous microenvironment was prepared through electrospinning technology and subsequent conjugation with vitronectin peptide to promote the culture and osteogenic potential of hPSCs in vitro. The results indicated that hPSCs successfully proliferated and maintained their pluripotency on the biointerface of peptide-conjugated nanofibers without Matrigel under defined conditions. Moreover, the prepared niche exhibited an appealing ability in promoting directed differentiation of hPSCs to osteoblastic phenotype without embryoid body formation step, determined from the cell morphological alteration, alkaline phosphate activity, and osteogenesis-related gene expression, as well as protein production. Such well-defined, xeno-free, and safe nanofiber scaffolds that allow the survival and facilitate osteo-differentiation of hPSCs provide a novel platform for hPSCs differentiation via cell-nanofiber interplay, and possess great value in accelerating the translational perspectives of hPSCs in bone tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700