Nanostructure on Taro Leaves Resists Fouling by Colloids and Bacteria under Submerged Conditions
详细信息    查看全文
文摘
The antifouling and self-cleaning properties of plants such as Nelumbo nucifera (lotus) and Colocasia esculenta (taro) have been attributed to the superhydrophobicity resulting from the hierarchical surface structure of the leaf and the air trapped between the nanosized epicuticular wax crystals. The reported study showed that the nanostructures on the taro leaf surfaces were also highly resistant to particle and bacterial adhesion under completely wetted conditions. Adhesion force measurements using atomic force microscopy revealed that the adhesion force on top of the papilla as well as the area around it was markedly lower than that on the edge of an epidermal cell. The decreased adhesion force and the resistance to particle and bacterial adhesion were attributed to the dense nanostructures found on the epidermal papilla and the area surrounding it. These results suggest that engineered surfaces with properly designed nanoscale topographic structures could potentially reduce or prevent particle/bacterial fouling under submerged conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700