Exponential Growth of LBL Films with Incorporated Inorganic Sheets
详细信息    查看全文
文摘
The fastest growth pattern of layer-by-layer (LBL) assembled films is exponential LBL (e-LBL), which has both fundamental and practical importance. It is associated with “in-and-out” diffusion of flexible polymers and thus was considered to be impossible for films containing clay sheets with strong barrier function, preventing diffusion. Here, we demonstrate that e-LBL for inorganic sheets is possible in a complex tricomponent film of poly(ethyleneimine) (PEI), poly(acrylic acid) (PAA), and Na+-montmorillonite (MTM). This system displayed clear e-LBL patterns in terms of both initial accumulation of materials and unusually thick individual bilayers later in the deposition process with film thicknesses reaching 200 µm for films composed of 200 pairs of layers. Successful incorporation of MTM layers was observed by scanning electron microscopy and thermo-gravimetric analysis. Surprisingly, the growth rate was found to be nearly identical in films with and without clay layers, which suggests fast permeation/reptation of polyelectrolytes between the nanosheets during the “in-and-out” diffusion of polymer. In considering these findings, e-LBL growth property is expected for a wide array of available inorganic nanoscale components and have a potential to greatly expand the e-LBL field and LBL field altogether. The large thickness and rapid growth of the films affords fast preparation of nanostructured materials which is essential for multiple practical applications ranging from optical devices to ultrastrong composites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700