Metallic LiMo3Se3 Nanowire Film Sensors for Electrical Detection of Metal Ions in Water
详细信息    查看全文
文摘
LiMo3Se3 nanowire film sensors were fabricated by drop-coating a 0.05% (mass) aqueous nanowire solution onto microfabricated indium tin oxide electrode pairs. According to scanning electron microscopy (SEM) and atomic force microscopy (AFM), the films are made of a dense network of 3−7 nm thick nanowire bundles. Immersion of the films in 1.0 M aqueous solutions of group 1 or 2 element halides or of Zn(II), Mn(II), Fe(II), or Co(II) chlorides results in an increase of the electrical resistance of the films. The resistance change is always positive and reaches up to 9% of the base resistance of the films. It occurs over the course of 30−240 s, and it is reversible for monovalent ions and partially reversible for divalent ions. The signal depends on the concentration of the electrolyte and on the size and charge of the metal cation. Anions do not play a significant role, presumably, because they are repelled by the negatively charged nanowire strands. The magnitude of the electrical response and its sign suggest that it is due to analyte-induced scattering of conduction electrons in the nanowires. An ion-induced field effect can be excluded based on gated conductance measurements of the nanowire films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700