Kinetic Studies of the Alternating Copolymerization of Cyclic Acid Anhydrides and Epoxides, and the Terpolymerization of Cyclic Acid Anhydrides, Epoxides, and CO2 Catalyzed by (salen)Crp
详细信息    查看全文
文摘
Copolymerization of a series of cyclic acid anhydrides with several epoxides using (salen)CrCl/onium salt catalysts has afforded polyesters with high molecular weights and narrow molecular weight distributions. The (salen)CrCl catalyst in the presence of the onium salts with formula PPNX (X = Clp>鈥?/sup>, N3p>鈥?/sup>) for the copolymerization of the anhydrides, maleic (MA), succinic (SA), phthalic (PA), cyclohexene (CHE), and cyclohexane (CHA) with the epoxides, cyclohexene oxide (CHO), propylene oxide (PO), and styrene oxide (SO) resulted in completely alternating enchainment of monomers to provide pure polyesters. Temperature dependent studies of the ring-opening copolymerization of phthalic anhydride and cyclohexene oxide monomers in toluene solution have yielded activation parameters of 螖Hp>鈥?/sup> = 67.5 kJ molp>鈥?p> and 螖Sp>鈥?/sup> = 鈭?5.3 J molp>鈥?p>, where the rate limiting step was ring-opening of the epoxide by the enchained anhydride. For the cyclic acid anhydride (CHA), the relative order of reactivity with epoxides decreased PO > CHO 鈮?SO, and for the epoxide (CHO) the relative rate of copolymerization was CHA > PA > CHE. The (salen)CrCl/PPNN3 catalyst system was also shown to effectively terpolymerize CHO/phthalic anhydride/CO2 to afford diblock copolymers, thereby producing in a one pot synthesis poly(ester-co-carbonate). Tg values of the synthesized polyesters displayed a temperature range over 130 掳C, from +95 掳C to 鈭?9 掳C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700