用户名: 密码: 验证码:
An Efficient and Highly Versatile Synthetic Route to Prepare Iron Oxide Nanoparticles/Nanocomposites with Tunable Morphologies
详细信息    查看全文
文摘
We report a versatile synthetic method for the in situ self-assembly of magnetic-nanoparticle-functionalized polymeric nanomorphologies, including spherical micelles and rod-like and worm-like micelles and vesicles. Poly(oligoethylene glycol methacrylate)-block-(methacrylic acid)-block-poly(styrene) (POEGMA-b-PMAA-b-PST) triblock copolymer chains were simultaneously propagated and self-assembled via a polymerization-induced self-assembly (PISA) approach. Subsequently, the carboxylic acid groups in the copolymers were used to complex an iron ion (FeII/FeIII) mixture. Iron oxide nanoparticles were then formed in the central block, within the polymeric nanoparticles, via alkaline coprecipitation of the iron(II) and (III) salts. Nanoparticle morphologies, particle sizes, molecular weights, and chemical structures were then characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), size exclusion chromatography (SEC), and 1H NMR measurements. TEM micrographs showed that the average size of the magnetic nanoparticles was 鈭? nm at the hydrophobic/hydrophilic nexus contained within the nanoparticles. In addition, XRD was used to confirm the formation of iron oxide nanoparticles. Importantly, the polymeric nanoparticle morphologies were not affected by the coprecipitation of the magnetic nanoparticles. The hybrid nanoparticles were then evaluated as negative MRI contrast agents, displaying remarkably high transverse relaxivities (r2, greater than 550 mM鈥? s鈥? at 9.4 T); a result, that we hypothesize, ensues from iron oxide nanoparticle clustering at the hydrophobic鈥揾ydrophilic interface. This simple synthetic procedure is highly versatile and produces nanocarriers of tunable size and shape with high efficacy as MRI contrast agents and potential utility as theranostic delivery vectors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700