Evaluating Parametrization Protocols for Hydration Free Energy Calculations with the AMOEBA Polarizable Force Field
详细信息    查看全文
  • 作者:Richard T. Bradshaw ; Jonathan W. Essex
  • 刊名:Journal of Chemical Theory and Computation
  • 出版年:2016
  • 出版时间:August 9, 2016
  • 年:2016
  • 卷:12
  • 期:8
  • 页码:3871-3883
  • 全文大小:608K
  • 年卷期:0
  • ISSN:1549-9626
文摘
Hydration free energy (HFE) calculations are often used to assess the performance of biomolecular force fields and the quality of assigned parameters. The AMOEBA polarizable force field moves beyond traditional pairwise additive models of electrostatics and may be expected to improve upon predictions of thermodynamic quantities such as HFEs over and above fixed-point-charge models. The recent SAMPL4 challenge evaluated the AMOEBA polarizable force field in this regard but showed substantially worse results than those using the fixed-point-charge GAFF model. Starting with a set of automatically generated AMOEBA parameters for the SAMPL4 data set, we evaluate the cumulative effects of a series of incremental improvements in parametrization protocol, including both solute and solvent model changes. Ultimately, the optimized AMOEBA parameters give a set of results that are not statistically significantly different from those of GAFF in terms of signed and unsigned error metrics. This allows us to propose a number of guidelines for new molecule parameter derivation with AMOEBA, which we expect to have benefits for a range of biomolecular simulation applications such as protein–ligand binding studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700