Human Pyruvate Dehydrogenase Complex E2 and E3BP Core Subunits: New Models and Insights from Molecular Dynamics Simulations
详细信息    查看全文
  • 作者:Samira Hezaveh ; An-Ping Zeng ; Uwe Jandt
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2016
  • 出版时间:May 19, 2016
  • 年:2016
  • 卷:120
  • 期:19
  • 页码:4399-4409
  • 全文大小:795K
  • 年卷期:0
  • ISSN:1520-5207
文摘
Targeted manipulation and exploitation of beneficial properties of multienzyme complexes, especially for the design of novel and efficiently structured enzymatic reaction cascades, require a solid model understanding of mechanistic principles governing the structure and functionality of the complexes. This type of system-level and quantitative knowledge has been very scarce thus far. We utilize the human pyruvate dehydrogenase complex (hPDC) as a versatile template to conduct corresponding studies. Here we present new homology models of the core subunits of the hPDC, namely E2 and E3BP, as the first time effort to elucidate the assembly of hPDC core based on molecular dynamic simulation. New models of E2 and E3BP were generated and validated at atomistic level for different properties of the proteins. The results of the wild type dimer simulations showed a strong hydrophobic interaction between the C-terminal and the hydrophobic pocket which is the main driving force in the intertrimer binding and the core self-assembly. On the contrary, the C-terminal truncated versions exhibited a drastic loss of hydrophobic interaction leading to a dimeric separation. This study represents a significant step toward a model-based understanding of structure and function of large multienzyme systems like PDC for developing highly efficient biocatalyst or bioreaction cascades.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700