Electrochemical Impedance Spectroscopy and Atomic Force Microscopic Studies of Electrical and Mechanical Properties of Nano-Black Lipid Membranes and Size Dependence
详细信息    查看全文
文摘
We present electrochemical impedance spectroscopic (EIS) and two-chamber AFM investigations of the electrical and mechanical properties of solvent-containing nano-BLMs suspended on chip-based nanopores of diameter of 200, 400, and 700 nm. The chips containing nanoporous silicon nitride membranes are fabricated based on low-cost colloidal lithography with low aspect ratio of the nanopores. BLMs of DPhPC lipid molecules are constructed across the nanopores by the painting method. Two equivalent circuits are compared in view of their adequacy in description of the EIS performances of the nano-BLMs and more importantly the structures associated with the nano-BLMs systems. The BLM resistance and capacitance as well as their size and time dependence are studied by EIS. The breakthrough forces, elasticity in terms of apparent spring constant, and lateral tension of the solvent-containing nano-BLMs are investigated by AFM force measurements. The exact relationship of the breakthrough force of the nano-BLM as a function of pore size is revealed. Both EIS and AFM studies show increasing lifetime and mechanical stability of the nano-BLMs with decreasing pore size. Finally, the robust 200 nm diameter nanopores are used to accommodate functional BLMs containing DPhPC lipid molecules and gramicidins by using a painting method with drop of mixture solutions of DPhPC and gramicidins. EIS investigation of the functional nano-BLMs is also performed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700