High Performance Small-Molecule Cathode Interlayer Materials with D-A-D Conjugated Central Skeletons and Side Flexible Alcohol/Water-Soluble Groups for Polymer Solar Cells
详细信息    查看全文
文摘
A new class of organic cathode interfacial layer (CIL) materials based on isoindigo derivatives (IID) substituted with pyridinium or sulfonate zwitterion groups were designed, synthesized, and applied in polymer solar cells (PSCs) with PTB7:PC71BM (PTB7: polythieno[3,4-b]-thiophene-co-benzodithiophene and PC71BM: [6,6]-phenyl C71-butyric acidmethyl ester) as an active layer. Compared with the control device, PSCs with an IID-based CIL show simultaneous enhancement of open-circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF). Systematic optimizations of the central conjugated core and side flexible alcohol-soluble groups demonstrated that isoindigo-based CIL material with thiophene and sulfonate zwitterion substituent groups can efficiently enhance the PSC performance. The highest power conversion efficiency (PCE) of 9.12%, which is 1.75 times that of the control device without CIL, was achieved for the PSC having an isoindigo-based CIL. For the PSCs with an isoindigo-based CIL, the molecule-dependent performance property studies revealed that the central conjugated core with D-A-D characteristics and the side chains with sulfonate zwitterions groups represents an efficient strategy for constructing high performance CILs. Our study results may open a new avenue toward high performance PSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700