Tuning Electron Transport through Functionalized C20H10 Molecular Junctions
详细信息    查看全文
  • 作者:Laura Zoppi ; Andrea Ferretti ; Kim K. Baldridge
  • 刊名:Journal of Chemical Theory and Computation
  • 出版年:2015
  • 出版时间:October 13, 2015
  • 年:2015
  • 卷:11
  • 期:10
  • 页码:4900-4910
  • 全文大小:595K
  • ISSN:1549-9626
文摘
First-principles methodology based on density functional theory (DFT) is used to investigate charge transport phenomena in molecular junctions, with the central active molecular element based on corannulene, C20H10, assembled between two carbon nanotubes (CNT). A number of key factors associated with the design of the molecular nanojunction are shown to have an impact on electron transport to varying degrees, including (I) the composition of the spacer linking the leads to the active element, (II) the composition of the active molecule element, (III) the sensor capabilities of the active element, and (IV) the response of the junction to an external electric field. This study demonstrates the ability to integrate molecular electronic functionality into electronic nanocircuits and provides novel insight into the design of new types of molecular-based devices by revealing the relationship between charge transport mechanisms and the electronic structure of molecular junction components.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700