Effects of Neonatal Iron Feeding and Chronic Clioquinol Administration on the Parkinsonian Human A53T Transgenic Mouse
详细信息    查看全文
文摘
Increased nigral iron (Fe) is a cardinal feature of Parkinson’s disease, as is the accumulation of aggregates comprising α-synuclein. We used wild-type mice and transgenic mice overexpressing the human A53T mutation to α-synuclein to examine the influence of increased Fe (days 10–17 postpartum) on the parkinsonian development phenotype of these animals (including abnormal nigral Fe levels and deficits in both cell numbers and locomotor activity), and to explore the impact of the Fe chelator clioquinol in the model. Both untreated and Fe-loaded A53T mice showed similar levels of nigral cell loss, though 5 months of clioquinol treatment was only able to prevent the loss in the non-Fe-loaded A53T group. Iron levels in the Fe-loaded A53T mice returned to normal at 8 months, though effects of dopamine denervation remained, demonstrated by limited locomotor activity and sustained neuron loss. These data suggest that Fe exposure during a critical developmental window, combined with the overexpression mutant α-synuclein, presents a disease phenotype resistant to intervention using clioquinol later in life.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700