NMR Relaxometric Properties of SPION-Loaded Solid Lipid Nanoparticles
详细信息    查看全文
文摘
Longitudinal and transverse relaxivities of solid lipid nanoparticles loaded with superparamagnetic iron oxide nanoparticles (SPION-SLNs) were thoroughly investigated with the aim of understanding the main parameters regulating the potential negative contrast properties of these systems. In particular, the longitudinal relaxivity (r1) of water protons in the 10 kHz to 35 MHz frequency range was determined by 1H fast field-cycling NMR, while transverse relaxivity (r2) was measured at 21 MHz. The reproducibility and stability of SPION-SLNs was also tested on samples arising from independent preparations and at different times after preparation. Water diffusion in proximity of superparamagnetic nanoparticles was found to be the mechanism of proton nuclear relaxation enhancement and characteristic parameters were quantitatively determined by fitting the experimental data acquired on different samples as a function of concentration and temperature. Although a variation ascribable to the formation of clusters with a different number of SPIONs inhomogeneously embedded in the lipid matrix was observed among different preparations, the relaxivity properties of the investigated SPION-SLNs were found to be better than those of SPION-based contrast agents commonly considered as standard in the literature, and remained stable for at least 2 months.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700