Monitoring and Control of a Continuous Grignard Reaction for the Synthesis of an Active Pharmaceutical Ingredient Intermediate Using Inline NIR spectroscopy
详细信息    查看全文
文摘
Inline near-infrared (NIR) spectroscopy has been used to monitor a continuous synthesis of an active pharmaceutical ingredient (API) intermediate by a Grignard alkylation reaction. The reaction between a ketone substrate and allylmagnesium chloride may form significant impurities with excess feeding of the Grignard reagent beyond the stoichiometric ratio. On the other hand, limiting this reagent would imply a loss in yield. Therefore, accurate dosing of the two reactants is essential. A feedforward鈥揻eedback control loop was conceived in order to maintain the reaction as closely as possible to the stoichiometric ratio, leading the path to full process automation. The feedback control loop relies on NIR transmission measurements performed in a flow cell where, in contrast to labor-intensive offline HPLC analytical methods, the whole reaction product can be scanned in real time without sample dilution. A robust PLS (projection to latent structures) model was developed with a satisfactory standard error of prediction, providing quantification of the ketone substrate in solutions with a high variability of the major solution component鈥攖he alkoxide product. In addition, model performance supervision tools such as the spectral residuals or simple plots of pretreated spectra can assist in the identification of spectral outliers, which in this case could be related to Grignard reagent excess. If the sampling time of the NIR instrument is short enough, manipulating the inputs to the reactor may be used to obtain information about its dynamic behavior. This information is very useful for process control design, assessment of analytical tools and definition of sampling times. In this work, a systematic procedure for chemometric model building is followed, after which a discussion is made on some of the potential applications that can be found when exploiting the fast and rich information provided by NIR spectroscopy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700