Graphene Oxide as a Promising Hole Injection Layer for MoS2-Based Electronic Devices
详细信息    查看全文
文摘
The excellent physical and semiconducting properties of transition metal dichalcogenide (TMDC) monolayers make them promising materials for many applications. The TMDC monolayer MoS2 has gained significant attention as a channel material for next-generation transistors. However, while n-type single-layer MoS2 devices can be made with relative ease, fabrication of p-type transistors remains a challenge as the Fermi-level of elemental metals used as contacts are pinned close to the conduction band leading to large p-type Schottky barrier heights (SBH). Here, we propose the utilization of graphene oxide (GO) as an efficient hole injection layer for single-layer MoS2-based electronic and optoelectronic devices. Using first-principles computations, we demonstrate that GO forms a p-type contact with monolayer MoS2, and that the p-type SBH can be made smaller by increasing the oxygen concentration and the fraction of epoxy functional groups in GO. Our analysis shows that this is possible due to the high work function of GO and the relatively weak Fermi-level pinning at the MoS2/GO interfaces compared to traditional MoS2/metal systems (common metals are Ag, Al, Au, Ir, Pd, Pt). The combination of easy-to-fabricate and inexpensive GO with MoS2 could be promising for the development of hybrid all-2D p-type electronic and optoelectronic devices on flexible substrates.

Keywords:

MoS2; graphene oxide; DFT; Schottky barrier; hole injection layer; p-type FET

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700