Adsorption of Nitrogen-Containing Compounds on the (100) α-Quartz Surface: Ab Initio Cluster Approach
详细信息    查看全文
文摘
A cluster approach extended to the ONIOM methodology has been applied using several density functionals and M酶ller鈥揚lesset perturbation theory (MP2) to simulate the adsorption of selected nitrogen-containing compounds [NCCs, 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 3-nitro-1,2,4-triazole-5-one (NTO)] on the hydroxyated (100) surface of 伪-quartz. The structural properties were calculated using the M06-2X functional and 6-31G(d,p) basis set. The M06-2X-D3, PBE-D3, and MP2 methods were used to calculate the adsorption energies. Results have been compared with the data from other studies of adsorption of compounds of similar nature on silica. Effect of deformation of the silica surface and adsorbates on the binding energy values was also studied. The atoms in molecules (AIM) analysis was employed to characterize the adsorbate鈥揳dsorbent binding and to calculate the bond energies. The silica surface shows different sorption affinity toward the chemicals considered depending on their electronic structure. All target NCCs are physisorbed on the modeled silica surface. Adsorption occurs due to the formation of multiple hydrogen bonds between the functional groups of NCCs and surface silanol groups. Parallel orientation of NCCs interacting with the silica surface was found to be favorable when compared with perpendicularly oriented NCCs. NTO was found to be the most strongly adsorbed on the silica surface among all of the considered compounds. Dispersion correction was shown to play an important role in the DFT calculations of the adsorption energies of silica鈥揘CC systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700