鈥淪oft鈥?Confinement of Graphene in Hydrogel Matrixes
详细信息    查看全文
文摘
Graphene plays as protagonist among the newly discovered carbon nanomaterials on the laboratory bench. Confinement of graphene, combined with enhanced exchange properties within aqueous environment, is key for the development of biosensors, biomedicine devices, and water remediation applications. Such confinement is possible using hydrogels as soft matrixes. Many entrapment methods focused on the modification of the graphene structure. In this paper, however, we address a confinement method that leaves unchanged the graphene structure, although intimately participating in the buildup of a network of polyvinyl alcohol (PVA) chains. PVA is a polymer known as biomaterial for its hydrophilicity, biocompatibility, and chemical versatility. A robust hybrid PVA 鈥?graphene construct was obtained starting from a surfactant-assisted sonication of an aqueous dispersion of graphite. Stable graphene sheets suspension was photopolymerized in a methacryloyl-grafted PVA, using the vinyl moiety present on the surfactant scaffold. This method can allow the incorporation in the polymer network of oligomers of N-(isopropylacrylammide), p(NiPAAm). These chains display in aqueous solution a low critical solution temperature, LCST, around 33 掳C and trigger a volume phase transition when incorporated in a hydrophilic network around the physiological temperature. Raman analysis was used to characterize the state of hydrogel embedded graphene single sheets. Evidence for an intimate interaction of graphene sheets and polymer matrix was collected. Release of the anticancer drug doxorubicin showed the active role of the graphene/PVA/p(NiPAAm) construct in the drug delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700