Scope of Stereoselective Mn-Mediated Radical Addition to Chiral Hydrazones and Application in a Formal Synthesis of Quinine
详细信息    查看全文
文摘
Stereocontrolled Mn-mediated addition of alkyl iodides to chiral N-acylhydrazones enables strategic C鈥揅 bond constructions at the stereogenic centers of chiral amines. Applying this strategy to quinine suggested complementary synthetic approaches to construct C鈥揅 bonds attached at the nitrogen-bearing stereogenic center using multifunctional alkyl iodides 6a鈥?b>d as radical precursors, or using multifunctional chiral N-acylhydrazones 26a鈥?b>d as radical acceptors. These were included among Mn-mediated radical additions of various alkyl iodides to a range of chiral N-acylhydrazone radical acceptors, leading to the discovery that pyridine and alkene functionalities are incompatible. In a revised strategy, these functionalities are avoided during the Mn-mediated radical addition of 6d to chiral N-acylhydrazone 22b, which generated a key C鈥揅 bond with complete stereochemical control at the chiral amine carbon of quinine. Subsequent elaboration included two sequential cyclizations to complete the azabicyclo[2.2.2]octane ring system. Group selectivity between two 2-iodoethyl groups during the second cyclization favored an undesired azabicyclo[3.2.1]octane ring system, an outcome that was found to be consistent with transition state calculations at the B3LYP/6-31G(d) level. Group differentiation at an earlier stage enabled an alternative regioconvergent pathway; this furnished the desired azabicyclo[2.2.2]octane ring system and afforded quincorine (21b), completing a formal synthesis of quinine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700