Combining the Many-Body GW Formalism with Classical Polarizable Models: Insights on the Electronic Structure of Molecular Solids
详细信息    查看全文
文摘
We present an original hybrid QM/MM scheme merging the many-body Green’s function GW formalism with classical discrete polarizable models and its application to the paradigmatic case of a pentacene crystal. Our calculated transport gap is found to be in excellent agreement with reference periodic bulk GW calculations, together with properly parametrized classical microelectrostatic calculations, and with photoionization measurements at crystal surfaces. More importantly, we prove that the gap is insensitive to the partitioning of pentacene molecules in QM and MM subsystems, as a result of the mutual compensation of quantum and classical polarizabilities, clarifying the relation between polarization energy and delocalization. The proposed hybrid method offers a computationally attractive strategy to compute the full spectrum of charged excitations in complex molecular environments, accounting for both QM and MM contributions to the polarization energy, a crucial requirement in the limit of large QM subsystems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700