Molecular Dynamics Study of Non-nucleoside Reverse Transcriptase Inhibitor 4-[[4-[[4-[(E)-2-Cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile (TMC278/Rilpivirine) Aggrega
详细信息    查看全文
文摘
The non-nucleoside reverse transcriptase inhibitor (NNRTI) TMC278/rilpivirine is an anti-AIDS therapeutic agent with high oral bioavailability despite its high hydrophobicity. Previous studies established a correlation between ability of the drug molecule to form stable, homogeneous populations of spherical nanoparticles (100−120 nm in diameter) at low pH in surfactant-independent fashion and good oral bioavailability. Here, we hypothesize that the drug is able to assume surfactant-like properties under physiologically relevant conditions, thus facilitating formation of nanostructures in the absence of other surfactants. The results of all-atom molecular dynamics simulations indeed show that protonated drug molecules behave as surfactants at the water/aggregate interface while neutral drug molecules assist aggregate packing via conformational variability. Our simulation results suggest that amphiphilic behavior at low pH and intrinsic flexibility influence drug aggregation and are believed to play critical roles in the favorable oral bioavailability of hydrophobic drugs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700