Optimal Reduction of the C1鈥揅3 Combustion Mechanism for the Simulation of Flaring
详细信息    查看全文
文摘
Flaring is a combustion process designed to relieve pressures and safely dispose of vent gases from chemical and petrochemical plants. An industrial flaring activity typically involves various combustible waste gases and a large number of reactions and species. Because most of the detailed kinetic mechanisms for the speciation study of flaring events are too complicated to use in the computational fluid dynamics simulation of industrial-scale flares, several techniques for reduction of the detailed combustion mechanisms have been developed. In this paper, a new rigorous skeleton mechanism (RSM) based reduction technique, namely, the LU 2.0 algorithm, is proposed. It falls under the category of identification of redundancy. Other techniques in this category try to remove redundant species and reactions based on criteria such as sensitivity and quasi-steady-state analyses. These are highly dependent on the preanalysis of the mechanism and require species concentration sets for the conditions of interest. This algorithm tries to find out the skeleton mechanism with the lowest possible error. It works by rigorously testing all of the possible combinations of species sets. This RSM-based optimized mechanism was validated successfully against experimental data for various key performance indicators (laminar flame speeds, burner-stabilized flame, adiabatic flame temperature, and ignition delay) for methane, ethylene, and propylene flames. The efficacy of this algorithm was demonstrated by its improved predictability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700