Electrically Induced Conformational Change of Peptides on Metallic Nanosurfaces
详细信息    查看全文
文摘
Surface immobilized biomolecular probes are used in many areas of biomedical research, such as genomics, proteomics, immunology, and pathology. Although the structural conformations of small DNA and peptide molecules in free solution are well studied both theoretically and experimentally, the conformation of small biomolecules bound on surfaces, especially under the influence of external electric fields, is poorly understood. Using a combination of molecular dynamics simulation and surface-enhanced Raman spectroscopy, we study the external electric field-induced conformational change of dodecapeptide probes tethered to a nanostructured metallic surface. Surface-tethered peptides with and without phosphorylated tyrosine residues are compared to show that peptide conformational change under electric field is sensitive to biochemical modification. Our study proposes a highly sensitive in vitro nanoscale electro-optical detection and manipulation method for biomolecule conformation and charge at bio鈥搉ano interfaces.

Keywords:

electrically induced conformational change; molecule鈭抔old interface; gold nanoparticle; surface-enhanced Raman spectroscopy; molecular dynamics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700