Solvatochromic and Solubility Parameters of Solvents: Equivalence of the Scales and Application to Probe the Solubilization of Asphaltenes
详细信息    查看全文
文摘
The oil compatibility model is important for assessing the stability of crudes. The compatibility between maltenes and the corresponding asphaltenes, Asphs, can be assessed from the solubility parameters (Hildebrand and Hansen) of both components of the crude. Solvatochromism is the effect of the medium on the UV/vis spectra of substances (solvatochromic probes) that are sensitive to the properties of the medium, namely, its empirical (or overall) polarity, Lewis acidity and basicity, dipolarity, and polarizability. Therefore, the solubility and solvatochromic parameters of solvents should be related. We synthesized a novel solvatochromic probe (E-2,6-di-tert-butyl-4-(2-(1-hexylquinolin-1-ium-4-yl)vinyl)phenolate, HxQMBub><b>2b>b>) whose properties are convenient to study in nonpolar and polar solvents. The empirical solvent polarities measured with HxQMBub><b>2b>b> in 38 solvents correlated linearly with the corresponding Hildebrand solubility parameters. Likewise, the solvent Lewis acidity/basicity, dipolarity, and polarizability correlated linearly with the corresponding Hansen solubility parameters. To test the equivalence of the two scales (solvatochromic and solubility parameters), we determined the solubility of Asphs in 28 solvents, pertaining to different chemical classes. The dependence of Asph solubility on three solvent descriptors (Lewis acidity/basicity, dipolarity, and polarizability) was tested. Our results indicated that alcohols and hydrocarbons are inefficient solvents; solvents of intermediate efficiency carry either a strongly dipolar group or polarized bonds. Aromatic and heterocyclic solvents are most efficient. The most relevant solvent descriptor (for the dissolution of Asphs) is its polarizability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700