Ordered and Hydrothermally Stable Cubic Periodic Mesoporous Organosilicas with SBA-1 Mesostructures: Synthesis, Characterization, Solid-State NMR Spectroscopy, and DFT Calculations
详细信息    查看全文
文摘
Periodic mesoporous organosilicas (PMOs) based on the cubic SBA-1 mesostructure (Pm3n mesophase) were synthesized by co-condensation of tetraethoxysilane (TEOS) and 1,2-bis(triethoxysilyl)ethane (BTEE) under acidic conditions using cetyltriethylammonium bromide (CTEABr) as a structure-directing agent. The ethane-bridged PMO materials thus obtained were characterized by powder X-ray diffraction (XRD), solid-state 13C and 29Si NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements. The maximum BTEE contents that can be incorporated into the pore wall without degrading the Pm3n mesostructure were up to 60% (based on silica). The resulting materials were hydrothermally stable up to 120 h in boiling water with only a slight decrease in their structural properties, whereas the structure of the pure silica counterpart SBA-1 material was completely collapsed after such treatment. The presence of the ethane groups in the mesoporous wall led to a more hydrophobic environment and thus enhancement of hydrothermal stability, as revealed by water adsorption. The combined results of 2D 29Si{1H} heteronuclear correlation (HETCOR) NMR and density functional theory calculations suggested that the T3−T2−Q4−Q3 motif could be the favorable framework building unit in PMOs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700